Application of the New equation of state to the Joule-Thomson effect

By Tetsuya ISHIKAWA

(Received July 27, 1953)

In a recent paper 1) I proposed an equation of state which equally satisfies the three criteria for state equations: RT_c/p_cV_c , T_B/T_c and $T_c/p_c \cdot (dp/dT)_c$. One more criterion with technical importance is the Joule-Thomson effect which is formulated thermodynamically

¹⁾ This Bulletin, 26, 78 (1953).

by the aid of van der Waals' equation of state, but results in a qualitative formula:

$$\mu = \frac{2a_{corr}/RT - b_{corr}}{C_p}, \quad a_{corr} = \frac{27R^2T_c^2}{64p_c},$$

$$b_{corr} = \frac{RT_c}{8p_c} \qquad ...(1)$$

where μ is the Joule-Thomson coefficient, C_p the molecular heat, R the gas constant, and T the temperature, these together with a_{corr} and b_{corr} being expressed in liters, atmospheres, moles, deg. absolute.

I will communicate in this letter the applicability of my equation of state to this problem.

Taking my equation, $p+a/V^{2-}=RT/(V-b)$, in the deduction of the above formula, it readily follows that

$$\mu = \frac{2aV^{\epsilon}/RT - b}{Cp}, \ a = 3p_cV_{c^2},$$

$$b = V_c/3, \qquad ...(2)$$

here a, b &c. are expressed in the same units as above.

It is noticed here that ε in the preceding paper where V is expressed in cc./mole, and ε' denoted here where V is expressed in liter/mole are related by $\varepsilon = \varepsilon' \times \log V/(\log V + 3)$.

From International Critical Tables III, V, and Henning's "Warmetechnische Richtwerte", five available data of H₂, CO₂, N₂, O₂ and air can be taken, among which, however, only air may serve as a test case for pressure effect.

To compare with $(2-\epsilon)$ directly from the equation of state, the test for its validity being the present purpose, estimate ϵ' from formula (2) and transform it into ϵ , from which $(2-\epsilon)$ from formula (2) is obtained.

	Hydro	ogen			
	0°C			100°C	
(2-ε) from formula (2)	1.979			2.005	
(2-ε) from equation of state	2.000			2.009	
	(p=50 atm.)			(p=50 atm.)	
Divergence in %	1.1			0.2	
	Carbon dioxide				
	0°C			100°C	
(2—ε) from formula (2)	1.890			1.910	
(2-ε) from equation of state	1.900			1.930	
	(extrapolated)			(p=50-1000 atm.)	
Divergence in %	0.5			1.0	
	Nitrogen				
	0°C			100°C	
(2—ε) from formula (2)	1.944			1.965	
(2-ε) from equation of state	2.007			2.039	
	(p=50-1000 atm.)			(p=50-1000 atm.)	
Divergence in %	3.1			3.6	
	Oxygen				
	0°C			100°C	
(2—ε) from formula (2)	1.941			1.959	
(2-ε) from equation of state	1.967			2.026	
	(p=36-62 atm.)			(p=100-1000 atm.)	
Divergence in %	1.3			3.3	
Air at 0°C					
			p (atm.)		
	1	20		60	100
(2—ε) from formula (2)	1.977	1.969		1.973	1.987
(2—ε) from equation of state	1.987	1.997		2.000	2.002
Divergence in %	0.5	1.4		1.4	0.8
Air at 100°C					
		00	p (atm.)		100
(0 - 1) forms forms 1- (0)	1 005	20		60	100
(2—e) from formula (2)	1.995	1.995		2.005	2.019
(2—ε) from equation of state	1.986	2.019		2.025	2.029
Divergence in %	0.4	1.2		1.0	0.5

The agreements between these two are fairly good as seen from the above tables, and even the greatest divergence arising in the cases of N_2 and O_2 is less than 4%, where the mean values of $(2-\varepsilon)$ from the equation of state at 50 or 100-1000 atms. are presumably the same as those at 1 atm. These results lead to the conclusion that the Joule-Thomson effect is formulated with accuracy by making use of my equation of state.

Sasebo Commercial Junior College, Sasebo, Nagasaki